

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 1(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Programmers Manual for the GizmoDistribution Toolkit

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 2(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

CONTENTS

1 GENERAL..4
1.1 What is GizmoDistribution?..4
1.2 Rationale ...4
1.3 Readers guide ..5

2 GIZMODISTRIBUTION OVERVIEW ...6
2.1 Publish-Subscribe networking...6
2.2 GizmoDistribution fundamentals ..7

2.2.1 Clients ..7
2.2.2 Sessions..7
2.2.3 Objects ...7
2.2.4 Events ..7
2.2.5 Attributes ...7
2.2.6 Distribution mechanism ...7

2.3 GizmoDistribution components ..10
2.3.1 Libraries ...10
2.3.2 Tools ..10

3 GIZMODISTRIBUTION DETAILS..11
3.1 Classes...11

3.1.1 gzDistribution classes ..11
3.1.2 gzRemoteDistribution classes ..13

3.2 Distribution manager...14
3.2.1 The kernel ..14
3.2.2 Starting and stopping ...14
3.2.3 Other tasks ...15

3.3 Sessions...16
3.3.1 Distributed data-space..16
3.3.2 Client operations ..16
3.3.3 Sessions types ..16

3.4 Objects ..18
3.4.1 Data stored on sessions ..18
3.4.2 Transactions ...19
3.4.3 Custom types..19

3.5 Events..20
3.5.1 Temporary data ..20
3.5.2 Custom types..20

3.6 Clients ...21
3.6.1 Data user ..21
3.6.2 Initailization ...21
3.6.3 Subscriptions and notifications ..22
3.6.4 Ownership ..23
3.6.5 Threading ...23

3.7 Evaluators..24
3.8 Servers...25

3.8.1 States..26
3.8.2 Priorities...26

3.9 Remote Distribution ..27
3.9.1 Sessions and servers (revisited) ...27
3.9.2 Channels...28
3.9.3 Transfer modes ..29
3.9.4 Transports ..29
3.9.5 Custom encoding ...30
3.9.6 Routing / multiplexing ...31

3.10 Reference management..34
3.11 Iterators..35

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 3(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.12 Error management ...35
3.13 Debugging ...36

3.13.1 gzDistMonitor ..36
3.13.2 gzDistSniffer ..37

4 TUTORIALS ..38
4.1 How to create GizmoDistribution applications ...38

4.1.1 The GizmoChat application ...38
4.2 How to setup GizmoDistribution projects...45

4.2.1 Microsoft Visual Studio 6 ..45

5 FAQ ..51
5.1 Object and event issues ...51
5.2 Client issues ..51
5.3 Network issues ..52
5.4 General issues ...53

6 LINKS...54

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 4(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

1 GENERAL

1.1 What is GizmoDistribution?

GizmoDistribution is a software development toolkit for creating distributed software systems

in C++. It has emerged from the demands for efficient and reliable real-time data network

exchange in the military simulation and training systems developed at SAAB.

GizmoDistribution offers an efficient, reliable and easy to use platform for systems and

applications that need real-time network distribution of data. It makes it possible to distribute

data between different threads, processes, hosts and networks in a uniform manner. The

distribution mechanism implements a data-centric publish/subscribe architecture that

decouples publishers from subscribers to enhance flexibility and scalability. It distributes

events and object states to make efficient use of available computer resources.

GizmoDistribution is one of the components of the GizmoSDK. GizmoSDK is a cross-

platform software development kit for C++ based applications.

1.2 Rationale

• The purpose of GizmoDistribution is to provide programmers with a development kit

for creating distributed software systems in C++. Data can be shared between clients

in a uniform manner no matter where they are located; in a single process, in different

processes on the local host or on different hosts on a network.

• The major design goal is to create an efficient and reliable but yet easy to use platform

for real-time network distribution of data. Target applications are e.g. distributed

simulation, command and control (C4I), distributed control, sensor networks, network

gaming, etc.

• GizmoDistribution distributes events and object states rather than providing a general-

purpose remote procedure call (RPC) based mechanism. The purpose is to keep the

design simple and to make efficient use of available resources, e.g. network

bandwidth.

• The interfaces of objects and events are defined dynamically in run-time, i.e. no IDL

descriptions or other compile time definitions are needed. The purpose is to enhance

system flexibility (e.g. backward compatibility), and to make life easier for

developers.

• GizmoDistribution implements a data-centric publish/subscribe architecture. Data-

centric communication decouples publishers and subscribers, i.e. they have no need or

interest in knowing who or how many the other publishers and subscribers are and

where they are located. The purpose is to enhance scalability and flexibility of the

target systems.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 5(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

• GizmoDistribution can be used for simple single user applications as well as complex

distributed applications including multiple users and workstations. It is easy to enable

distribution to an existing single user application developed with GizmoDistribution.

Clients can easily be added, removed or relocated without affecting existing clients.

• Nothing prevents GizmoDistribution from being combined with other similar

distributed object solutions within a system. For example both HLA and

GizmoDistribution can be used in an application. RPC-based solutions like COM and

CORBA are also possible to combine with GizmoDistribution.

• GizmoDistribution is one of the components of the GizmoSDK. It is a cross-platform

development kit. Write once and run almost everywhere is the philosophy. The

components are verified on all recommended platforms to make sure they behave in

the same way with memory management, threading, synchronization, networking, etc.

that normally is dependant on the selected platform.

1.3 Readers guide

This manual is mainly aimed for software architects, developers and programmers and other

potential users of GizmoDistribution.

Chapter 2 gives an overview of the API. It describes fundamental concepts that are important

to understand before proceeding with chapter 3 that describes the details of the API. Chapter 4

contains step-by-step tutorials and chapter 5 is an FAQ where you may find answers your

questions.

Developers that need a quick introduction on how to use GizmoDistribution should first read

chapter 2 to gain an understanding of the concepts. Then it would be a good idea to jump to

the tutorials in chapter 4 to learn the basics of how to create distributed applications.

Since GizmoDistribution uses many classes and features from the GizmoBase API, it is

recommended to also read the Programmers Manual for GizmoBase. It would also a good

idea to have the online reference manuals at hand while reading, since the document includes

code snippets illustrating how to use the API.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 6(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

2 GIZMODISTRIBUTION OVERVIEW

This chapter gives a brief introduction to GizmoDistribution. First the publish-subscribe

network distribution paradigm is explained briefly. Then the fundamental concepts of the

toolkit are introduced. These concepts are very important to understand before reading any

proceeding chapters. Finally the components (libraries and tools) of the toolkit are described

briefly.

2.1 Publish-Subscribe networking

There are two basic networking paradigms in common use today; the client-server paradigm

and the publish-subscribe paradigm. In client-server networks are clients connected to a

dedicated central server, as shown below. Clients issue requests to the server. The server

processes the requests and returns the result to the clients. The client-server paradigm is used

by e.g. DCOM and CORBA.

Client

Client Server

Client

Client

In publish-subscribe networks is there no dedicated central server. Instead data may be

distributed from any host to every host in a many-to-many communication pattern as shown

below. GizmoDistribution basically use the publish-subscribe networking paradigm, since

there is no dedicated server. But to keep objects consistent between processes there must

always be (at least) one process that act as a server or master, as described in section 3.3.3.

Client

Host

Host

Host

Host

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 7(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

2.2 GizmoDistribution fundamentals

The basic elements of GizmoDistribution are clients, sessions, objects, events and attributes.

Objects, events and attributes are data elements. Clients are users of data and sessions are data

spaces where data is published. The basic concept of GizmoDistribution is to distribute

objects and events to clients on sessions.

2.2.1 Clients

A client is a user of distributed data. Clients have the capability to publish and subscribe for

different types of events and objects on a session. A client can be both a publisher and a

subscriber at the same time. Due to the data-centric design, clients do not need to know

anything about where and if there are any other clients.

2.2.2 Sessions

A session is a data space representing a common client interest to share distributed data.

Clients may join one or more sessions to publish and/or subscribe for different kinds of data.

Sessions have a unique name and can be either local or global. A local session only exist

within the local process, while a global session is shared between processes and hosts on a

network. See also section 2.2.6.

2.2.3 Objects

An object is an instance of data stored on a session. It has a lifetime from the moment it is

added until it is removed from a session. It has a unique name and a set of named attributes

that are defined in run-time. The set of attributes is dynamic, i.e. it can be modified at any

time. Subscribing clients are notified when objects are added, updated or removed from a

session.

2.2.4 Events

An event is a temporary instance of data. It is not stored on a session; it only exists on the

session the moment it is sent. Just like an object is has a set of named attributes that are

defined in run-time, but the set of attributes is static, i.e. it can not be updated after the event

has been sent. Subscribing clients are notified when an event is sent on a session.

2.2.5 Attributes

Both events and objects have properties called attributes. An attribute basically consists of a

name and a value. The name is unique per event or object. The value can be of many different

types, but typically it is a string or a number.

2.2.6 Distribution mechanism

GizmoDistribution allow clients to share objects and events on sessions in a uniform manner

no matter where they are located.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 8(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Client Client

Session

ClientClient Client

In the simplest case data is distributed only to clients within a single process (local sessions),

but may also be distributed to different processes on the local host or to different hosts on a

network (global sessions), as illustrated below. A global session may be shared by any

number of processes. The remote distribution mechanism ensures that all clients joined to a

session share consistent data in all of the processes. The remote distribution mechanism is

further described in section 3.9.

Single Host Multiple Processes

ProcessProcess

Clients

Local

Session

Clients

Local

Session

Global

Session

HostHost

ProcessProcess

Clients

Local

Session

Clients

Local

Session

Global

Session

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 9(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

A system can also be configured to distribute data between clients located on different

networks, e.g. on the internet. See section 3.9.6 for details on how to route remote distribution

between networks.

Local Sub Network

Host

Processes

Host

Processes

Remote Network

Host

Processes

Host

Processes

Host

Routing

Process

Host

Routing

Process

Host

Processes

Local Sub Network
Host

Processes

Host

Processes

Host

Processes

Internet

Host

Processes

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 10(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

2.3 GizmoDistribution components

2.3.1 Libraries

GizmoDistribution include of two libraries:

• The gzDistribution library includes the basic framework of classes and utilities used

for distribution of events and objects.

• The gzRemoteDistribution library includes classes used for enabling distribution of

events and objects to other processes as described in section 2.2.6.

gzDistribution can be used separately from gzRemoteDistribution. There are dependencies

only from gzRemoteDistribution to gzDistribution. The purpose of this is to let systems that

do not use global sessions to exclude communication with remote process instances.

The libraries are dependent only of the gzBase library of the GizmoBase component in the

GizmoSDK. No other external special-feature or third-party components are used.

2.3.2 Tools

Apart from the libraries GizmoDistribution also include three debugging and utility tools:

• gzDistRouter is a utility tool for routing/multiplexing distribution messages between

different communication transports, e.g. connecting two sites over the internet.

• gzDistMonitor is a debugging tool that can be used for viewing distribution data

(sessions, objects, events and attributes) and clients within a process.

• gzDistSniffer is a debugging tool used for viewing distribution messages sent on the

network.

Graphical user interfaces are built with QT from Trolltech (http://www.trolltech.com/).

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 11(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3 GIZMODISTRIBUTION DETAILS

This chapter describes the details of the SDK. The first section gives on overview and a brief

introduction to the main classes of the API. The remaining sections describe different aspects

of the API in more detail.

3.1 Classes

GizmoDistribution consist of two libraries; gzDistribution and gzRemoteDistribution, as

described in section 2.3. This section gives a brief introduction to the classes that define the

public interface of the libraries.

3.1.1 gzDistribution classes

gzDistServerInterfacegzDistErrorgzDistRemoteChannelInterface

gzDistribution library

overview

gzDistCl ientInterface

gzDistEvaluatorInterface

gzDistSessionObjectIterator

gzDistManager gzDistSessionIterator

gzDistEventAttributeIterator gzDistObjectAttributeIterator

gzDistSession

0..*0..*

0..*0..*

0..*0..*

gzDistEvent

0..*0..*

gzDistObject

0..*0..*

gzDistAttribute

0..*0..* 0..*0..*

gzDistTransaction
1..*1..* gzDistTransactionIteratorgzDistNotificationSet gzDistNotificationData

1..*1..*1..*1..*

The UML-diagram above shows the main classes of the gzDistribution library and their

relationship.

gzDistManager is the kernel of GizmoDistribution that is responsible for local distribution.

There is only one manager instance per process (singleton). The interface includes methods

for general configuration as well as for starting and stopping the distribution framework. The

manager also keeps track of all current clients and sessions in the local process. The manager

is further described in section 3.2.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 12(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

gzDistSession represent sessions. Sessions has clients, store objects and distribute events.

Sessions are either local or global. A local session only exist within the local process while

global sessions are distributed to remote instances. Sessions are described in section 3.3 and

3.9.1.

gzDistClientInterface is the base class for clients to inherit. It is through this interface

class that clients interact with the sessions and the data. Clients typically join one or more

sessions, subscribe for objects and events and possibly add and update objects and send

events. Clients are notified about subscribed changes on the sessions through callbacks. The

client interface is described in section 3.6.

gzDistObject represent objects that can be added to sessions. An object instance can only

belong to one session at a time. It is possible for clients to add, remove and update attributes

on objects in run-time. Objects are described in section 3.4.

gzDistEvent represent a events that can be sent on sessions. An event instance can only be

sent once and only on one session. Events are not stored on a session; they only exist on a

session the moment they are sent. Events are described in section 3.5.

gzDistAttribute represent basic attributes. They have a name and a dynamic type value.

Both objects and events are built up of attributes.

gzDistTransaction is used for grouping attributes together to perform a transaction on an

object. A transaction is an atomic operation including one or more attributes to be updated

added or removed from an object.

gzDistNotificationData is the attribute container for client object notifications.

gzDistNotificationSet is a collection of notification data. Clients receive instances of

this class in notification callbacks.

gzDistEvaluatorInterface is the base class for evaluators to inherit. Evaluators are

executed when objects are added, updated or removed from a session. The purpose is to

accept or reject new objects, object removals and object transactions in order to keep the

objects on a session consistent. A transaction will be canceled if it is rejected by any

evaluator. An evaluator may update a transaction to make it valid. See also section 3.7.

gzDistServerInterface provide a mechanism to control where to execute certain

functions (services) in a distributed environment. The server interface is described in

section 3.8.

gzDistSessionIterator is used for iterating over sessions within the local process,

gzDistSessionObjectIterator for iterating over objects in a session,

gzDistObjectAttributeIterator for iterating over attributes in an object,

gzDistEventAttributeIterator for iterating over attributes in an event, and

gzDistTrnasactionIterator for iterating over attributes in a transaction.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 13(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

gzDistError contains error information. GizmoDistribution stores the last error on a per

thread basis.

gzDistRemoteChannelInterface is an abstract class defining the interface for

communication with remote instances. The interface is implemented by the

gzDistRemoteChannel class in the gzRemoteDistribution library (see section 3.1.2).

3.1.2 gzRemoteDistribution classes

gzDistTransportTCP gzDisTransportUDP gzDistTransportPipe

gzDistEncoderInterface

gzDistRemoteChannel

0..10..1

gzRemoteDistribution library overview

gzDistRouterEngine

gzDistTransportInterface

110..*0..*

The UML-diagram above shows the main classes of the gzRemoteDistribution library and

their relationship. The details of remote distribution are described in section 3.9.

gzDistRemoteChannel implements the interface for remote distribution. To enable remote

distribution (i.e. global sessions) the gzDistManager instance must be initialized with two

remote channels (the server channel and the session channel). Each channel need to have a

transport for communication. See also section 3.9.2.

gzDistTransportInterface is a base class for distribution transports. Transports are

used for transporting data between remote instances. They encapsulate different basic

communication protocols (and media). Currently there are transports defined for UDP, TCP

and named pipe communication. See also section 3.9.4.

gzDistEncoderInterface gives the possibility to enable custom encoding/formatting of

messages sent on the network, e.g. encryption or compression. See also section 3.9.5.

gzDistRouterEngine can be used for routing/multiplexing messages between different

communication transports. See also section 3.9.6.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 14(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.2 Distribution manager

3.2.1 The kernel

The distribution manager (class gzDistManager) is the kernel of GizmoDistribution.

There is only one singleton manager per process. It is the engine for distribution of data

within the local process and keeps track of the current clients and sessions in the process. The

internal manager thread runs the kernel of the distribution framework responsible for all local

processing and notification. The manager serves as a hub and a filter for notifications to and

from clients through sessions.

Manager

Client

Client

Client

Client

Client

Client

3.2.2 Starting and stopping

The manager interface includes methods for general configuration as well as for starting and

stopping the distribution framework. The simplest configuration is for local distribution

between clients within a single process.

// Create the manager

gzDistManagerPtr manager = gzDistManager::getManager(TRUE);

// Start local distribution

manager->start();

. . .

// Stop distribution

manager->shutDown();

// Release the manager

manager = NULL;

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 15(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

It is almost as simple to create a default configuration for global distribution. The difference is

that two channels must be supplied; one channel for session communication and one for

server communication. The code example below uses the default channel configuration.

// Create the manager

gzDistManagerPtr manager = gzDistManager::getManager(TRUE);

// Start global distribution using the default channels

manager->start(gzDistCreateDefaultSessionChannel(),

 gzDistCreateDefaultServerChannel());

. . .

// Stop distribution

manager->shutDown();

// Release the manager

manager = NULL;

If you do not want to use the default channels you will have to create and configure the

channels your self. See section 3.9 for details about remote process communication and

custom channel configuration.

3.2.3 Other tasks

Other tasks that are enabled through the manager interface are e.g.:

• custom client thread ticking (described in section 3.6.5)

• fast memory management configuration (described in section Error! Reference

source not found.)

• local process debugging using gzDistMonitor (described in section 3.13)

Note also that the manager is reference managed (see section 3.10).

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 16(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.3 Sessions

3.3.1 Distributed data-space

A session (class gzDistSession) is a named data-space that represents a common client

interest to share distributed data. A session has a number of joined clients subscribing and/or

publishing data to the session. Data elements are either objects or events. Objects are named

data stored on the session for clients to subscribe, add, update or remove. Events are not

stored on the session, they only exists on the session the moment they are sent. For an event

the session is more like an address where the event is sent.

Note that sessions are reference managed (see section 3.10).

3.3.2 Client operations

All main operations on a session should be done through the client interface (see section 3.6).

Clients should always join a session before performing any operation. When the client no

longer has any interest in the session it should resign from it. A session exists as long as there

are clients joined to it. It is removed from a local process when the last local client resigns or

when the manager is shut down, though it may still exist in other processes.

3.3.3 Sessions types

Sessions can be either local or global. On a local session data is only distributed locally to be

shared only between clients in the local process. On a global session data is also distributed

globally to be shared with clients in remote processes. A global session does not exist in a

process until it has been created by a client inside that process. This means that data on a

global session is the same in all processes where the session is created, but does not exist in

processes where the session has not yet been created. If a session is created to be local in

some processes but to be global in some, it will stay local where created local and global

where created global, and they will not interfere. This is not recommended to do though, since

it may confuse developers to make mistakes.

Local distribution

On a local session all operations and notifications to clients are performed by the local

manager (see section 3.2). The manager is responsible for keeping objects consistent within

the local process. Notifications are always delivered in the same order to all clients within the

local process.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 17(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Global distribution

On a global session every process (where the session is created) keeps its own copy of all

objects stored on it

Global

Session

ProcessProcess

Clients

Obj
Obj

Obj

Obj

Obj

Obj

Clients

Obj
Obj

Obj

Obj

Obj

Obj

On a global session there is always one process acting as a server for that session (see also

section 3.9.1). The session server is responsible for keeping the objects consistent with respect

to attributes, attribute values and ownership, in all processes.

Operations on objects, like adding, updating and removing, are issued through the current

session server, i.e. the operation is not performed in the local process, but instead a request is

sent to the server. The server process requests from all clients and decide how and if the

request should be executed and broadcast the result. The purpose is to make sure that objects

on a global session are the same in all processes where the session exist, i.e. all clients in all

processes has a consistent view of the objects. This also means that all object notifications are

always delivered in the same order for all clients in all processes.

Global Session

Client

Process

Session
Server

Process

Process

Process

Update

Request

Update

Update

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 18(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Events on the other hand are not handled by the session server. This is not needed since they

are not stored on a session and can not be changed after they have been sent. Instead events

are broadcasted to other processes directly from the local process of the sending client. This

means that event notifications are not necessarily delivered in the same order to clients in

different processes. Though within a process events are always notified in the same order for

all clients and events sent from one specific client are always notified to all other clients in the

same order as they are sent.

Global Session

Client

Process

Process

Process

Process

Event

Event

Event

See also section 3.9.1 for further details on global sessions and global distribution.

3.4 Objects

3.4.1 Data stored on sessions

An object (class gzDistObject) is data stored on a session with a unique name. An

object can only belong to one session at a time, although different objects with the same name

may be stored on different sessions. An object has a life time from the moment it is added to a

session until it is being removed.

An object is built up of a set of named attributes. The set is dynamic, i.e. it can be modified at

any time. Attributes may be added or removed and the values may be updated. The values can

be of many different types (see class gzDynamicType defined in GizmoBase), but

typically they are strings or numbers.

The attributes of an object may be owned by a client. It is only the owner that is allowed to

update an attribute (see also section 3.6.4). Attributes that do not have an explicit owner are

free for any client to update.

Note that objects are reference managed (see section 3.10).

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 19(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.4.2 Transactions

Attributes on an object can be added, updated or removed in two ways. Either attribute by

attribute or a group of attributes in a transaction (class gzDistTransaction). A

transaction is an atomic operation on an object including one or more attributes. Attributes

belonging to a transaction will always be notified together to subscribing clients. If any of the

attributes in the transaction is owned by another client the operation will be rejected.

3.4.3 Custom types

It is possible to create custom object types by inheriting the gzDistObject base class. This

makes it possible for clients to subscribe for specific object types (see section 3.6.3).

// A custom object class definition (to be placed in your header-file)

class MyObject : public gzDistObject

{

 public:

 // Declare interface (used for subscription etc)

 GZ_DECLARE_TYPE_INTERFACE;

 // Construction and destruction

 MyObject(const gzString& name);

 virtual ~MyObject();

 // Clone interface

 virtual gzReference* clone() const;

};

. . .

// Type hierarchy information (to be placed in your cpp-file)

GZ_DECLARE_TYPE_CHILD(gzDistObject, MyObject, "MyObject");

If custom object types are used on global sessions there must be a factory installed for each

type. Otherwise object will not be transferred between processes since the type is unknown to

the distribution kernel. A factory is a name-less and empty instance of the object type that is

registered at the manager before startup. This instance is cloned by the kernel when creating

new objects.

// Install custom object type factory

manager->registerFactory(new MyObject(GZ_EMPTY_STRING));

Factories are automatically unregistered when the manager is shut down, but may also be

manually unregistered if needed.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 20(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.5 Events

3.5.1 Temporary data

An event (class gzDistEvent) is a temporary instance of data sent on a session. An

event has no name and no life time. It exists only the moment it is sent. An event is built up of

a set of named attributes defined in run-time, just like objects, but the set is static, i.e. it can

not be modified after the event has been sent. The attributes of an event has no owners since

they can not be modified. Note that events are reference managed (see section 3.10).

3.5.2 Custom types

It is possible to create custom event types by inheriting the gzDistEvent base class. This

makes it possible for clients to subscribe for specific event types (see section 0).

// A custom event class definition (to be placed in your header-file)

class MyEvent : public gzDistEvent

{

 public:

 // Declare interface (used for subscription etc)

 GZ_DECLARE_TYPE_INTERFACE;

 // Construction and destruction

 MyEvent();

 virtual ~MyEvent();

 // Clone interface

 virtual gzReference* clone() const

};

. . .

// Type hierarchy information (to be placed in your cpp-file)

GZ_DECLARE_TYPE_CHILD(gzDistEvent, MyEvent, "MyEvent");

If custom event types are used on global sessions there must be a factory installed for each

type. Otherwise events will not be transferred between processes since the type is unknown to

the distribution kernel. A factory is an empty instance of the event type that is registered at the

manager before startup. This instance is cloned by the kernel when creating new events.

// Install custom event type factory

manager->registerFactory(new MyEvent);

Factories are automatically unregistered when the manager is shut down, but may also be

manually unregistered if needed.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 21(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.6 Clients

3.6.1 Data user

Clients are the users of distributed data. Clients typically join one or more sessions and

subscribe and add some subscriptions. They are then notified about subscribed changes as

they appear through a virtual callback interface. Clients also have the capability to send events

as well as to add, update and remove objects on the sessions they are joined to. In fact it is

only from the client interface that this is possible.

3.6.2 Initailization

Clients are implemented by inheriting the gzDistClientInterface class and

implementing the appropriate virtual notification callbacks. The client interface is the most

important interface of the GizmoDistribution SDK. All main tasks are performed through this

interface.

// A customized client class

class MyCustomClient : public gzDistClientInterface

{

 public:

 MyCustomClient(const gzString& name);

 virtual ~MyCustomClient();

 private:

 // Add appropriate callbacks as needed ...

};

Every client instance should be created with a name that is unique within the local process.

Before joining any sessions the client must be initialized. A client is initialized with a thread

pool id and a tick interval. Clients using the same pool id get notifications and ticks on the

same thread (see section 3.6.5). When the client is uninitialized it will automatically be

resigned from all sessions.

// Initialize client

gzDistClientInterface* client = new MyCustomClient(“my_client”);

client->initialize(myTickInterval, myThreadPool);

. . .

// Uninitialize client

client->uninitialize();

delete client;

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 22(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.6.3 Subscriptions and notifications

The table below gives an overview of available subscriptions and notifications and how they

are triggered. All subscriptions can be canceled by calling a corresponding unsubscribe

function. All subscriptions corresponding to a session are cancelled automatically when the

client resigns from the session.

Subscription Notification callback Triggered by
onNewSession() Session created

(in the local process)

subscribeSessions()

onRemoveSession() Last local client resign

subscribeEvents()

onEvent()

sendEvent()

onNewObject()

addObject()

subscribeObjects()

onRemoveObject()

removeObject()

onNewAttributes()

updateObject()

subscribeAttributes()

onRemoveAttribute()

removeAttributes()

removeAttribute()

subscribeAttributeValue()

onUpdateAttributes()

updateObject()

When subscribing for sessions a client will notified when sessions are created or removed

within the local process, i.e. global sessions that are not created in the local process will not

be notified.

Subscriptions for events and objects regard a specified type on a session. Clients will get

notified when events of a subscribed type (or subtype) are sent and when objects of a

subscribed type (or subtype) are added on the session.

There are two different kinds of attribute subscriptions. A client can subscribe for either new

and removed attributes on an object (subscribeAttributes()) or for value updates of a

specific attribute (subscribeAttributeValue()).

Object notifications are done by value, i.e. every update of an object is notified with the

values resulting from the transaction it was triggered by. The purpose of this is to make sure

that the clients get updated with correct states in consecutive order. Since notification

callbacks are asynchronous this also means that the notification data (class

gzDistNotificationData) may differ from the state of the actual object in a callback.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 23(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.6.4 Ownership

Clients may own attributes of objects. If an attribute is explicitly owned by a client no other

clients are allowed to remove or update it.

Clients request ownership by calling the requestOwnership() method. When ownership is

granted the client will be notified through the onGrantOwnership() callback. The current

owner will be notified through the onRequestOwnership() callback when another client

has requested ownership. To drop ownership or remove an ownership request the client

should call dropOwnership(). There is also a way to force ownership to be moved from

one client to another. This is done by calling pullOwnership(). This feature should be used

with care.

3.6.5 Threading

All calls from the clients to the distribution kernel are asynchronous, i.e. they are executed on

the manager thread instead of the calling client thread. Though in most cases is it possible to

wait for the result by specifying a wait timeout.

Notifications to the clients are also asynchronous, i.e. they are not done on the manager

thread, but on a thread specified when the client is initialized. A client is initialized with a

thread pool id and a tick interval. Clients using the same pool id are notified on the same

thread.

Optionally clients can get ticked (onClientTick() callback) on the very same thread at a

desired interval. Clients may also decide not to use the thread pool, but instead trigger the

notifications and ticks from a custom thread (e.g. a GUI-thread). There can be only one

custom thread per process. Ticking is triggered from the manager using the method

processCustomThreadClients(). The purpose of the tick callback is to make it possible

to create single-threaded clients.

The purpose of the asynchronous calls and notifications is to enhance the efficiency and

stability of the distribution kernel, and to prevent client deadlocks.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 24(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.7 Evaluators

The purpose of an evaluator is to accept or reject object transactions. If a transaction is

rejected by any evaluator the transaction will be canceled. Evaluators are allowed to add

attributes to a transaction to make it valid, but should not have any other side effects.

An evaluator class is created by inheriting the gzDistEvaluatorInterface class and

implementing the appropriate evaluation callbacks. Note that evaluators are reference

managed (see section 3.10).

class MyEvaluator : public gzDistEvaluatorInterface

{

 public:

 MyEvaluator(gzType* classType);

 virtual ~MyEvaluator();

 private:

 gzBool onNewObject(gzDistObject* object);

 gzBool onRemoveObject(gzDistObject* object);

 gzBool onUpdateObject(gzDistTransaction* transaction,

 gzDistObject* object);

 gzBool onRemoveAttributes(gzDistTransaction* transaction,

 gzDistObject* object);

};

An evaluator is registered to one or more sessions to evaluate a specific object type. The

evaluator is then executed when an object is being added, updated or removed. Evaluators are

only executed in the process where the transaction was initiated.

// Create an evaluator

gzDistEvaluatorInterfacePtr evaluator = new

 MyEvaluator(gzDistObject::getClassType());

// Register the evaluator to a session

session->registerEvaluator(evaluator);

. . .

// Unregister the evaluator

// Normally you don’t need to bother since evaluators are

// unregistered automatically when sessions are destroyed

session->unregisterEvaluator(evaluator);

evaluator = NULL;

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 25(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.8 Servers

The purpose of the distributed server support in is to provide a mechanism to control where to

execute certain server functions (services) in a network. A server function is uniquely

identified by a function identifier (name). All server instances sharing a name are capable of

executing the same function, but only one will be active at the time. When the active instance

is shutdown, another instance will take over. The server distribution mechanism is priority

based, i.e. the instance with the best capabilities (the highest priority) will be active while all

the other instances are passive. If one or more instances have the same priority the one that

was started first will be the active one.

The server is capable of recovering from a situation where the active server crashes or is

disconnected from the network. It will be discovered by the other instances when ping

messages no longer are received, and after a timeout period of 10 seconds, the remaining

instance with the highest priority will take over as active.

The server is also capable of recovering from situations where there for some reason is more

than one active instance, e.g. when networks have been disconnected and are reconnected

again. When an active instance discovers that there is another active it will go back to passive

if it has lower priority.

The distributed server support is used by inheriting the gzDistServerInterface class and

implementing the virtual callbacks.

// A customized server class

class MyCustomServer : public gzDistServerInterface

{

 public:

 MyCustomServer();

 virtual ~MyCustomServer();

 private:

 // Add appropriate callbacks as needed

};

The global session server (see section 3.3.3) uses the same basic implementation as the public

server interface.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 26(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.8.1 States

A sever instance can have five different states as shown in the state chart below.

Idle

Passive Active

ShutdownStartup

The two main states are passive and active. Only the instance currently running the server

function is allowed to be in the active state. All other instances are passive. The startup and

shutdown states are temporary states entered at startup and shutdown of an instance. Disabled

instances are in the idle state.

3.8.2 Priorities

Five different basic server priorities are defined with max as the highest and very low as the

lowest. There is also the special priority called never, that can be used by instances that don’t

want to run the server function, but yet wants to inform other instances of its presence.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 27(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.9 Remote Distribution

3.9.1 Sessions and servers (revisited)

The fundamental concept of GizmoDistribution is to let clients share objects and events on

sessions. On a local session only clients with in the local process share data, while on a global

session clients share data no matter where they are located.

ProcessProcess

Clients

Local
Session

Clients

Local
Session

Global
Session

Global sessions use a remote distribution mechanism to share objects and events. Every

process where a global session is created keeps its own copy of all objects stored on it. The

remote distribution mechanism is responsible for transferring the data between processes. The

same mechanism is used both between processes on the local host and between different hosts

on a network.

Process

Clients

Global Sessions

Remote Distribution

Process

Clients

Global Sessions

Remote Distribution

Two different communication channels are used for remote distribution; the session channel

and the server channel. The session channel transfer session data (objects and events, etc) and

the server channel transfer server control data (see also section 3.8). The reason for the two

channels is that servers require control data to be delivered in time, i.e. delayed messages may

cause errors. Therefore different channels are used to avoid situations where heavy session

data transfer delay server data. The server channel is internally handled with a higher priority

than the session channel.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 28(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Session Channel

Server Channel

Global Session
Session Server

(Internal)

Server

(Internal)

Remote DistributionGlobal Session Server

On a global session there is always a session server responsible for keeping the objects

consistent in all processes. The session server exists in all processes where the session is

created but is only active in one of the processes. If the current active session server is

stopped or crashed, another process will take over. This is implemented using the server

mechanism described in section 3.8. Hence global sessions use both the session channel and

the server channel.

3.9.2 Channels

GizmoDistribution use two communication channels (class gzDistRemoteChannel) as

described in section 3.9.1. The channels are responsible for sending and receiving as well as

for encoding and decoding messages. Each channel is associated with a transport that

provides the underlying communication mechanism (see section 3.9.4) and may optionally

also be associated with a custom encoding mechanism to add e.g. compression and/or

encryption of data sent over the network (see section 3.9.5). It is important that the two

channels do not have the same transport configuration; otherwise they will interfere with each

other.

// Setup session channel

gzDistRemoteChannel* sessionChannel = new gzDistRemoteChannel;

sessionChannel->setTransport(sessionTransport, sessionEncoder);

// Setup server channel

gzDistRemoteChannel* serverChannel = new gzDistRemoteChannel;

serverChannel->setTransport(serverTransport, serverEncoder);

// Start global distribution

manager->start(sessionChannel, serverChannel);

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 29(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

The above code example shows how to create channels using custom transports. For

convenience there are two functions provided for creating channels with default settings.

gzDistCreateDefaultSessionChannel() can be used for creating a default session

channel and gzDistCreateDefaultServerChannel() for creating a default server

channel. gzDistCreateChannel() is a generic helper function for creating channels

without having to bother about the transport classes.

3.9.3 Transfer modes

Communication may be configured for either reliable or best-effort data transfer mode. Best-

effort mode incurs the least overhead, but does not provide reliable communication, i.e.

messages may be lost on the network occasionally. Best-effort is the default mode and should

be good enough for most applications. For networks including unreliable links or links with

limited bandwidth it is recommended to use the reliable mode.

To enable reliable transfer mode you should supply the constructor of your channel with a

buffer size. The buffer size states the maximum number of messages to be stored in a re-send

buffer. A zero buffer size will give best-effort mode

// Create reliable mode channel

gzDistRemoteChannel* channel = new gzDistRemoteChannel(bufferSize);

The buffer is a FIFO where outgoing messages are stored. When a remote process discovers

that one or more messages have been lost, it will request for those messages to be re-sent.

Received messages are acknowledge periodically. It is recommended to use the default buffer

sizes. Note that too small buffers may decrease the throughput performance.

Note that all processes in a system using GizmoDistribution must use the same transfer mode

configuration. A process configured for reliable mode can not cooperate with a process

configured for best-effort mode and vice versa.

3.9.4 Transports

Transports handle communication with remote processes using different transport protocols.

Currently there are transports defined for UDP, TCP and named pipe communication. The

default channels use UDP multicast or UDP broadcast. These are the common transport types

used on local area networks. Other transport types are primarily aimed for situations where

you need to connect different remote network or to limit the communication to processes on

the local host. How to connect and route/multiplex communication between different

transports is described in section 3.9.6.

All transports are datagram-oriented (like UDP), even though the underlying protocol may be

stream-oriented (e.g. TCP and named pipe). The reason is that it must be possible to recognize

complete messages (or message fragments) from different sources even though they might be

interleaved.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 30(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

UDP

An UDP transport (class gzDistTransportUDP) can be configured for unicast, multicast

or broadcast. Multicast and broadcast are the commonly used transports since they make it

possible to distribute data between any number of hosts on a local area network without

wasting network bandwidth. Unicast is useful only for connecting two single processes or for

connection networks or network segments not reachable by multicast or broadcast.

TCP

The TCP transport (class gzDistTransportTCP) can be configured to be either a server

listening on a given port or a client connection to a given port on a given host. The server may

accept only one client connection at a time. Like UDP unicast the TCP transport is useful for

connecting networks or network segments not reachable by multicast or broadcast. The

purpose of the TCP transport is to provide a robust connection when there are unreliable links

or links with limited bandwidth. TCP is more efficient than the reliable transfer on those links.

Named pipe

A named pipe transport (class gzDistTransportPipe) can be either local or global and

a server or a client. A local named pipe stays within the local host, while a global named pipe

is accessible on every host on a local network. The server transport creates the pipe, while the

client connects to an existing pipe. The main purpose of the named pipe transport is to make it

possible to distribute data between processes on the local host only with a local pipe. This can

be especially useful on Win32 hosts that don’t have any physical network or loopback adapter

installed.

3.9.5 Custom encoding

The custom encoding interface (class gzDistEncoderInterface) gives the possibility

to enable custom encoding/formatting, e.g. encryption or compression, of network data. A

custom encoder is created by inheriting the gzDistEncoderInterface class and

implementing the virtual protected onEncode() and onDecode() methods. onEncode() is

called when an outgoing message shall be encoded and onDecode() is called when an

incoming message shall be decoded.

// A custom encoder class

class MyCustomEncoder : public gzDistEncoderInterface

{

 public:

 MyCustomEncoder(gzDistEncoderInterface* parent = NULL);

 virtual ~MyCustomEncoder();

 protected:

 gzUInt onEncode(const gzUByte* source, gzInt sourceLength,

 gzArray<gzUByte>& destination);

 gzUInt onDecode(const gzUByte* source, gzInt sourceLength,

 gzArray<gzUByte>& destination);

};

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 31(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

It is possible to chain encoder together by supplying a parent encoder to the constructor.

Parent encoders are executed before the child when encoding and after the child when

decoding.

GizmoDistribution supply two default encoders; one compressor and one simple scrambler.

The compressor (class gzDistDefaultCompressor) uses an enhanced Ziv-Lempel

algorithm. The scrambler (class gzDistDefaultEncoder) is a simple key-based encoder

that provides basic message privacy. Note that it is not a qualified cipher and should not be

used when security is an important issue.

Note also that using any type of encoders or scramblers will affect the performance. The max

rate for sending and receiving data from the network will decrease.

3.9.6 Routing / multiplexing

The purpose of routing/multiplexing of messages between communication transports is to

connect two remote network sites over e.g. the internet. Typically the two sites will run

GizmoDistribution using UDP multicast or broadcast, but for being part of the same system

they must be connected e.g. using a TCP transport or a UDP unicast transport. In the figure

below show an example where three network sites are connected.

First site

using e.g. UDP multicast

Second site

using e.g. UDP broadcast

GizmoDistribution

Router

GizmoDistribution
Router

Third site

using e.g. UDP multicast

GizmoDistribution
Router

UDP

TCP

Router engine

The gzDistRouterEngine class provides the means for routing messages between different

transports. The router engine will forward an incoming message from one transport to all

other installed transports. The engine can be configured to route all incoming messages or

only GizmoDistribution messages. Note that for GizmoDistribution to work properly there

must be two different router engines; one for the session channel and one for the server

channel (see section 3.9.2).

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 32(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

// Create the router (started automatically)

gzDistRouterEngine* router = new gzDistRouterEngine;

// Add transports

router->addTransport(firstTransport);

router->addTransport(secondTransport);

router->addTransport(thirdTransport);

. . .

// Delete the router (stopped automatically)

delete router;

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 33(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Router tool

The SDK also include a pre-compiled tool with a GUI (gzDistRouter) that implements a

transport router/multiplexer. The tool implements two routers, one for each channel. It also

includes communication configuration and statistics views.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 34(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.10 Reference management

GizmoDistribution uses reference management for data that is shared between local clients.

All classes that inherit the gzDistThreadSafeReference class (e.g. gzDistEvent and

gzDistObject) implements a thread-safe reference management interface with a ref() and

an unref() method. The ref() method increments a reference counter starting from zero

and the unref() method decrements the counter. When the counter reaches zero on a call to

unref() the data is automatically deleted.

GizmoDistribution include pre-defined smart-pointer types for the reference managed classes.

These are named *Ptr, e.g. gzDistEventPtr is a smart-pointer for the gzDistEvent

class. A smart-pointer variable allocated on the stack will automatically call ref() and

unref() within its scope when initialized with a reference managed instance.

See also the GizmoBase Programmers Manual for details about reference management.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 35(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.11 Iterators

There are iterators defined for iterating over;

• sessions in the local process (gzDistSessionIterator)

• objects in a session (gzDistSessionObjectIterator)

• attributes of an object (gzDistObjectAttributeIterator)

• attributes of an event (gzDistEventAttributeIterator)

• attributes of a transaction (gzDistTransactionIterator)

It is important to be aware that the iterators may block the manager thread. Therefore it is

important use them fast and in as small scopes as possible. When frequent iterations are

required it is more efficient to subscribe for the needed data and keep a local list or dictionary

to iterate over.

3.12 Error management

GizmoDistribution manages errors on a per thread basis. The last error for every thread (both

internal and external) interacting with any of the libraries is stored.

Information about the last error on the current thread can always be looked up with the

gzDistGetLastError() function. By calling gzDistReportLastError() a description

string of the last error may also be sent using the message mechanism of GizmoBase. The last

error can be cleared by calling gzDistClearLastError().

Error information is encapsulated by the gzDistError class. The error information includes

e.g. an error level, an error code, an error description string and optionally an additional

description string.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 36(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.13 Debugging

3.13.1 gzDistMonitor

gzDistMonitor is a debugging tool that can be used for viewing data (objects, events and

attributes) and clients on sessions within a process. Debugging of a process must be enabled

from within the process. This is done by calling the enableDebug() method of the

gzDistManager class as shown below.

// Enable debugging

gzDistManager::getManager()->enableDebug(TRUE);

. . .

// Disable debugging

gzDistManager::getManager()->enableDebug(FALSE);

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 37(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

3.13.2 gzDistSniffer

gzDistSniffer is a debugging tool used for viewing distribution messages sent on the network.

The primary purpose is to enhance debugging of the GizmoDistribution remote distribution

protocol in it self, but the gzDistSniffer can also be used for monitoring the network activity

of processes or debugging the network architecture of a system using GizmoDistribution.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 38(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

4 TUTORIALS

This chapter contains step-by-step tutorials.

4.1 How to create GizmoDistribution applications

4.1.1 The GizmoChat application

This tutorial will explain how to create a simple GizmoDistribution application step-by-step.

We will start with the example application called “GizmoChat”, that can be found among the

examples in GizmoDistribution online documentation (see http://www.gizmosdk.com/) and in

the examples directory of the SDK installation. The example illustrates a simple application

that sends and receives messages between one or more hosts on local network.

After we have setup the project environment as described in 4.2, we can start writing the code.

First of all we need to include all header files needed for GizmoDistribution. That is done

through the gzDistributionLibrary.h file. So our first line will be:

#include "gzDistributionLibrary.h"

Now we want to be some kind of user of GizmoDistribution. We want to publish data and we

want to receive data from some kind of global scope. To fulfil that, we have to be a client to

the distribution system. That is simply done by inheriting gzDistClientInterface(). In

the example, we have chosen to name our class CChatClient.

class CChatClient : public gzDistClientInterface

{

 public:

 // Constructor declaration.

 CChatClient();

 // Destructor declaration.

 virtual ~CChatClient();

 // The run method.

 gzVoid run();

 protected:

 // Virtual callback reimplemented from gzDistClientInterface.

 gzVoid onEvent(gzDistEvent* event);

};

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 39(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

The client class consists of a constructor, a destructor, a method named run() and the

onEvent() method that is re-implemented from the base class. All we can see here is that it

brings a pointer to a gzDistEvent. We’ll talk more about this method later.

Let us move on to the implementation of the chat program. First we need a body for the

constructor. It looks like this:

CChatClient::CChatClient() : gzDistClientInterface("ChatClient")

{

}

The only thing that is worth to mention here is that we need to give the client (our interface) a

name. We have chosen the name “ChatClient”.

The body of our destructor is empty.

CChatClient::~CChatClient()

{

}

Now let us have a look at the run() method.

gzVoid CChatClient::run()

{

 // Create the distribution manager.

 gzDistManagerPtr manager = gzDistManager::getManager(TRUE);

 // Start the manager and use default channels.

 manager->start(gzDistCreateDefaultSessionChannel(),

 gzDistCreateDefaultServerChannel());

First we declare a reference handle to gzDistManager. We get the manager with the call

gzDistManager::getManager(TRUE). The argument means that the manager should be

created if it not exists.

The next thing is to start the manager. The start() method on the manager takes two

arguments. The arguments are two channels for communication with remote processes. We

can skip the arguments if we just want to communicate inside our own process. In this case

when we want to communicate outside our process we need channels to talk to other

processes through. One channel is for transporting all user data like events and objects, and

one channel is for system control communication. This is normally nothing you need to care

about; it is just the way it works.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 40(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

There are two ways to create the channels. Either we do it manually by specifying what type

of transport, which IP-address and port number we want to use, or we can shoes to use the

default channels. In this case we do the simplest thing, we shoes the default channels. All this

should be done only once per process. See the online documentation for details about the

default channels.

To be able to work with the distribution system we need to be initialized. This is simply done

with the following line:

// Initialize my distribution interface.

initialize();

We have the possibility to setup a tick interval if we want to do something on a regular

interval (every x-th second). We do not need it here so we leave it blank.

Now we need something we to send and receive our messages on; something that delivers

messages between clients. In GizmoDistribution this is called a session. A session has a name

and can be either local or global. The name is a unique identification of the session. A local

session distributes data only inside a process, even if we have installed channels. A global

session distributes data outside the process but require installed channels. Let us go on and

create the session. In this example we have chosen to give the session the name

“ChatSession”.

// Create a global session where all chat messages will be sent.

gzDistSessionPtr myChatSession = getSession("ChatSession", TRUE, TRUE);

// Join the session.

joinSession(myChatSession);

Here we declare a reference handle to the session, and get the session with the

getSession() method. The first argument is the name of the session we want to have, the

second tells if we want the session to be created if it does not exist (TRUE = create), the third

argument tells that the session should be a global session (TRUE = global).

After we have a handle to the session we want to tell that we want to use the session. That is

done with the joinSession() method. If the client does not join the session, it can not

receive anything from it.

After that we need to tell the session that we want to receive data from it. In this example we

are interested only in gzDistEvent. It is possible to create and use customized event types,

but in this case we are satisfied with the base type. So we simply subscribe for all events of

type gzDistEvent the session “ChatSession”.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 41(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

// Subscribe for all events on myChatSession.

subscribeEvents(gzDistEvent::getClassType(), myChatSession);

The getClassType() return run-time class type information (see also the GizmoBase

programmers manual) used for identifying subscriptions.

Next we want to manage user input. What it does is to allocate buffers for alias and message

and ask the user to enter an alias and messages to send to other users.

// Alloc a buffer for alias.

gzChar alias[128];

// Tell the user to enter his/her alias.

printf("Enter your alias:");

// Get user alias.

gets(alias);

// Print some information and a '>' at cursor position.

printf("Write your messages here. Type 'exit' to exit.\r\n>");

// Alloc a message buffer.

gzChar message[1024];

// Repeat until 'exit' is entered.

while (gets(message))

{

 // Quit if the user type 'exit'.

 if (gzString(message) == "exit")

 {

 // Break the 'while loop'.

 break;

 }

 // Don't send an empty message.

 if (strlen(message) == 0)

 {

 // Empty message.

 //Put a cursor at cursor position and wait for new input.

 printf(">");

 continue;

 }

 // Put a cursor at cursor position.

 printf(">");

The next step is to create a message, i.e. a gzDistEvent and put the message in it and send

the message on our session.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 42(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

// Create a new event.

gzDistEvent* event = new gzDistEvent;

// Put the alias in the event.

event->setAttributeValue("Sender", alias);

// Put the message in the event.

event->setAttributeValue("Message", message);

// Put an id for current process in the event.

event->setAttributeValue("Id", gzDistGetCurrentProcessID());

// Send my message on myChatSession.

sendEvent(event, myChatSession);

The first line creates the event. The second and the third put the alias and the message in the

event. The fourth line puts an ID of current process in the event. We do this because we want

to know if the event was sent from our selves in the onEvent() method. An event consists of

a number of attributes. An attribute consists of a name and a value. The name is a string and

the value can be any type, typically a number or a string. To set an attribute to an event we

use the setAttributeValue() method. After we have put all information in the event we

want to send we send the event on our session. This will be repeated until the user write “exit”

on the command line.

When we are tired on sending messages to everyone we release our session handle by setting

it to NULL, we un-initialize our client interface and shut down the manager.

// Release my reference to the chat session.

myChatSession = NULL;

// Uninitialize my distribution interface.

uninitialize();

// Shut down the manager.

manager->shutDown();

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 43(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

Now, let us move on to the onEvent() method. This is a callback method that is inherited

from gzDistClientInterface. We will be notified on all events that we have subscribed

for in this function. The argument is a pointer to the event that is being sent to us.

gzVoid CChatClient::onEvent(gzDistEvent* event)

{

 gzDouble id;

 // Get the id from the event

 if (event->getAttributeNumber("Id", id))

 {

 // Don't receive my own messages.

 if (id == gzDistGetCurrentProcessID())

 {

 // I'm the sender -> Don't display.

 return;

 }

 }

 // Get the sender name

 gzString sender = event->getAttributeString("Sender");

 // Get the message

 gzString message = event->getAttributeString("Message");

 // Display the message.

 // To make this example to work on other platforms,

 //just change this line to a command that fit your platform.

 MessageBox(NULL, message, sender, MB_OK);

}

The first thing we do in this method is to check if the message was sent from my self. If this is

the case, we just return and do nothing. If the sender wasn’t me, we get the sender (the alias)

and the message from the event and we display a message box with the alias and the message.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 44(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

The last thing to describe is the main routine. It simply creates an instance of our chat client

and run it.

int main(int argc, char* argv[])

{

 // Create the chat client.

 CChatClient chatClient;

 // Run it!

 chatClient.run();

 return 0;

}

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 45(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

4.2 How to setup GizmoDistribution projects

4.2.1 Microsoft Visual Studio 6

This tutorial explains step-by-step how to setup a GizmoDistribution project in

Microsoft Visual Studio 6.

1. Unzip the GizmoDistribution “Libraries and Headers” file for “Win32 VS 6” and

GizmoBase “Libraries and Headers” file for “Win32 VS 6” to “C:\”. These files can

be downloaded from http://www.gizmosdk.com/. If you extract the files using

WinZip, it will automatically create a folder called “GizmoSDK”.

2. Start Microsoft Visual Studio 6.

3. Go to the File menu and select New…

4. Select the type of application you want to create in the “Projects” tab. In this tutorial

we select the “Win32 Console Application” alternative.

5. Select a project location in the “Locations” edit box. In this tutorial we chose

“C:\MyGizmoApps\”.

6. Select a project name in the “Project name” edit box. In this tutorial we have chosen

to call our application “MyGizmoExample”.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 46(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

7. Press <OK>

8. In the “Win32 Console Application” dialog, ensure that “An empty project” is

selected and press “Finish”.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 47(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

9. Press <OK> in the “New Project Information” dialog.

10. Go to the File menu and select New…

11. Ensure the “Files” tab is selected.

12. Select “C++ Source File”.

13. Ensure the “Add to project” checkbox is selected.

14. Enter “MyGizmoExample” in the “File name” edit box.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 48(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

15. Press <OK>.

16. Go to the Project menu and select Settings…

17. Select the “C/C++” tab.

18. Select “Win32 Debug” in the “Settings For” combo box.

19. Select “Code Generation” in the “Category” combo box.

20. Select “Debug Multithreaded DLL” in the “Use run-rime library” combo box.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 49(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

21. If you want to run a release configuration, select “Win32 Release” in the “Settings

For” combo box and then “Multithreaded DLL” in the “Use run-rime library”

combo box.

22. Select “All Configurations” in the “Settings For” combo box.

23. Select “Preprocessor” in the “Category” combo box.

24. Type the path to the include directory for GizmoDistribution and GizmoBase in the

“Additional include directories” edit box, separated with a comma. In our case

“C:\GizmoSDK\GizmoDistribution\Include, C:\GizmoSDK\GizmoBase\Include”.

25. Select the “Link” tab.

26. Select “Input” in the “Category” combo box.

27. Add “gzBase.lib gzDistribution.lib gzRemoteDistribution.lib” somewhere in the

“Object/library modules” edit box.

Note: The gzRemoteDistribution.lib is needed only if you are using global sessions,

i.e. if you need to communicate between processes or computers.

28. Type the path to the lib directory for GizmoDistribution and GizmoBase in the

“Additional library path” edit box, separated with a comma. In our case

“C:\GizmoSDK\GizmoDistribution\Lib, C:\GizmoSDK\GizmoBase\Lib”.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 50(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

29. Press <OK>

30. Copy all the code from an example in the GizmoDistribution examples and paste it

into your “MyGizmoExample.cpp” file.

31. Go to the Build menu and select “Build MyGizmoExample.exe” or just press <F7>

to build the example.

32. Press <F5> to run the application! Make sure that the location of the Gizmo libraries

(DLLs) are in your path.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 51(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

5 FAQ

5.1 Object and event issues

• Does GizmoDistribution use IDL for defining types and interfaces of objects and
events?

No. Both objects and events have dynamic attribute interfaces, i.e. they are built up of a

set named attributes that are allocated in run-time. The type of an attribute is also

dynamic, i.e. it could be of any type (almost), but typically a number or a string. The

difference between the attributes of an event and an object is that an object can be

modified, i.e. attributes can be added, removed or updated at any time. It is possible to

create custom object and event types though. To do this you inherit the gzDistObject or

gzDistEvent classes and implement the GizmoBase run-time type interface.

• Why are interfaces defined in run-time instead of compile-time as for most other
distributed object SDKs?

The purpose is to enhance the flexibility of systems. It is very easy to e.g. add a new

attribute to an object or an event. You don’t have to specify nor its name or its type in any

IDL definition. Backward compatibility is easy to fulfill since existing don’t even have to

be re compiled.

5.2 Client issues

• Are new objects notified to clients in the same consecutive order as they are
added to the session?

Yes. Objects are added to the session and notified to clients as the requests to add objects

are processed. On a local session the requests are processed by the local manager, and on

a global session the requests are processed by the current global session server. This

means that all clients will get notified with new objects on a session in equal order, no

matter where they are located. The same applies for updated objects and removed objects.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 52(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

• Are events notified to clients in the same consecutive order as they are sent on
the session?

Not necessarily. Within the local process events are notified in the same order as they are

processed by the manager. But on a global session events are distributed on the network

directly from the process instance where the sending client is located, i.e. the events are

not processed by the current global session server. This means that all clients within a

single a process will get notified in the same order, but the order may be different from

other processes.

• The attributes in the notification data and the attributes in the corresponding
object are not always equal. Why?

This is by design. The purpose of the notification data is to describe which attributes

where added, updated or removed, and what the resulting attribute values were. Since

notifications are asynchronous the corresponding object may have been updated again

before the current update was notified.

5.3 Network issues

• Which of the UDP transport types is to prefer? Multicast or broadcast?

They both have their advantages and drawbacks. We have encountered problems with

multicast on some networks. On some networks broadcast is not even allowed. Ask your

local network administrator for advice.

• Is it possible to distribute data only between processes on the local host, but not
to other hosts on the network?

Yes. Use local named pipe transports or try binding UDP multicast or broadcast transports

to address 127.0.0.1 (localhost).

• I have a client sending large bursts of events on a global session. The other
clients within the local process always receive all events, but clients in other
processes sometimes seem to lose events. Why? What is the solution?

You are probably running your channels in best-effort transfer mode. When using best-

effort mode, there is no mechanism for detecting and recovering messages that are lost on

the network. Try using the reliable transfer mode instead by applying an appropriate

buffer size to the channel constructor. Note that all processes must use the same transfer

mode.

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 53(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

5.4 General issues

• Does GizmoDistribution include any mechanism for remote method invocation
(RPC or similar)?

No. Not yet anyway…

Document: Date: Document version: Page:
GizmoDistribution Programmers Manual 2010-03-01 2.5 54(54)

GizmoSDK Copyright © 2004 – Saab Training Systems AB

http://www.saabtrainingsystems.com/,

email mailto:gizmosdk_info@sts.saab.se

6 LINKS

http://www.gizmosdk.com The GizmoSDK web site.

http://www.trolltech.com/ The QT / Trolltech web site.

